

EXTREME PROFILOMETRY

Designed with Chromatic Light technology, which measures physical wavelengths, the **NANOVEA** ST500 Profilometer provides the highest accuracy on any roughness, form, or material. Transparent or opaque.

> SPACIOUS & OPEN DESKTOP PLATFORM

ULTRAFAST LARGE AREA MEASUREMENTS

400 mm CONTINUOUS SCAN STITCHING FREE

> FULLY PROGRAMMABLE ADVANCE AUTOMATION

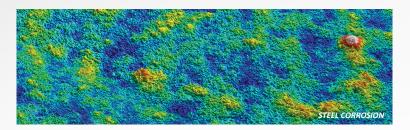
X-Y STAGE TRAVEL

400 x 400 mm Motorized

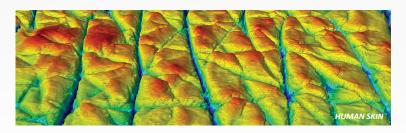
50 mm Motorized + 140 mm w/ Manual Slide

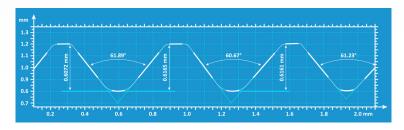
Ζ

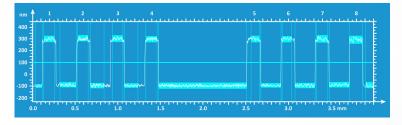
AXIS

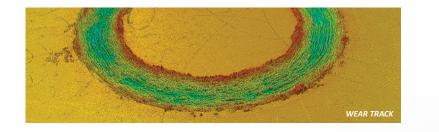

X-Y MAX SPEED 200 mm/s

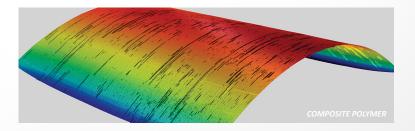
THE POWER OF CHROMATIC LIGHT


NANOVEA Non-Contact Optical Profilers are the ideal upgrade from traditional contact stylus and laser profilometers.


2D & 3D NON-CONTACT SURFACE MEASUREMENTS


ROUGHNESS & FINISH


TEXTURE & GRAIN


GEOMETRY & SHAPE

STEP HEIGHT & THICKNESS

VOLUME & AREA

FLATNESS & WARPAGE

STANDARDS ISO 4287 / ISO 13565 / ISO 12085 / ISO 12780 / ISO 12181 / ISO 25178 & other ISO & ASME standards

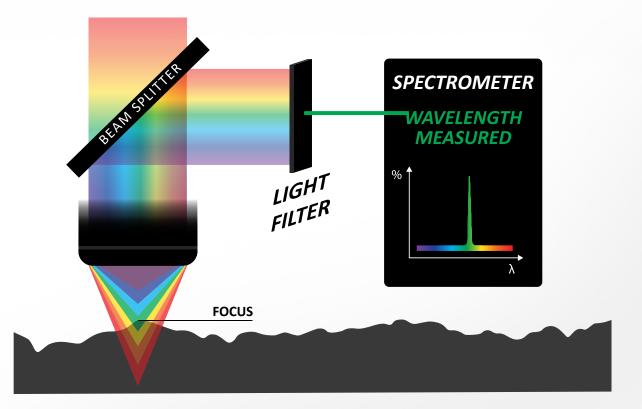
ANY MATERIAL. TRANSPARENT, REFLECTIVE OR DARK

1 nm MAX VERTICAL RESOLUTION

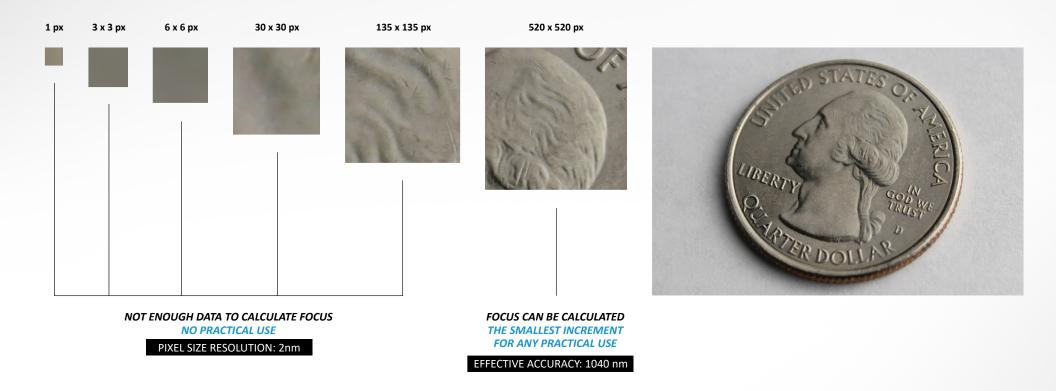
up to 87° MAX SURFACE ANGLE

SINGLE POINT							
•	PS1	PS2	PS3	PS4	PS5	PS6	
MAX HEIGHT RANGE WORKING DISTANCE LATERAL X-Y ACCURACY	3.3 mm —— 0.8 μm ——	1.7 μm ——	12.2 mm 2.6 μm	16.5 mm 4.6 μm	26.6 mm 11.0 μm	20 mm 11.0 μm	
HEIGHT REPEATABILITY*	1.9 nm ——	5.4 nm ——	15.8 nm ——	31.6 nm ——	117.0 nm —	237.2 nm	

-	LS1	LS2	LS3
MAX HEIGHT RANGE	200 μm	0.95 mm	3.9 mm
WORKING DISTANCE	— 5.3 mm —	18.5 mm	41 mm
HEIGHT REPEATABILITY Ra *	— 14 nm — — — — — — — — — — — — — — — — — —	21 nm	70 nm
	— 0.96 mm —	1.91 mm	4.78 mm
PITCH	— 5 μm —	10 μm	25 μm
LATERAL ACCURACY OF EACH POINT	— 1 µm — — —	2 μm	5 μm
ACQUISITION RATE (points per second)	384 KHz	384 KHz	384 KHz


* Fixed point measurement on glass. Ra average height variation for 1,200 points (100 samplings).

HOW IT WORKS


Chromatic Light Technology works by using white light and a set of sphero-chromatic lenses to split the light into individual wavelengths, each with its unique vertical focal point or height. All wavelengths, with their corresponding heights, make up the height range measurement scale of a sensor.

The spectrometer detects the wavelength with the highest intensity and processes its associated height measurement. During a full raster scan, this process takes only a fraction of a second and produces an accurate height map of the surface of interest.

THE PROBLEM WITH OTHER TECHNIQUES LATERAL RESOLUTION VS LATERAL ACCURACY

THEM

To impress clients, companies often choose to define **Display Resolution** or **Camera Pixel Size** as lateral resolution. However, instruments that rely on camera pixel-based technology require complex algorithms to determine the focal point, which is problematic for analyzing complex surfaces.

US

Chromatic Light provides lateral *accuracy* which is determined by the physics and is directly related to the spot size of the chromatic light source of the optical sensor.

LASER SCANNING CONFOCAL MICROSCOPE

LASER RADIATION

HEALTH HAZARD

Exposure to laser light reflectivity

INCONSISTENT LASER LIGHT WAVELENGTH

Inconsistencies in wavelength during scanning affect accuracy of results

DECEPTIVE 'DISPLAY RESOLUTION'

Lateral & height accuracy are fixed by the objective lens making 'Display Resolution' insignificant

COMPLEX ALGORITHMS

Alpha blending algorithms stitch collected data layer by layer, grounding accuracy on complex calculations

STITCHING REQUIRED

Objective lenses have limited fixed fields of view Stitching of larger areas compromises accuracy of the scan

> 50x SLOWER Data acquisition speed up to 7.9 KHz

CHROMATIC LIGHT **OPTICAL SENSOR**

SAFE WHITE LIGHT No need for protective wear

UNIFORM & BROAD WHITE LIGHT SPECTRUM

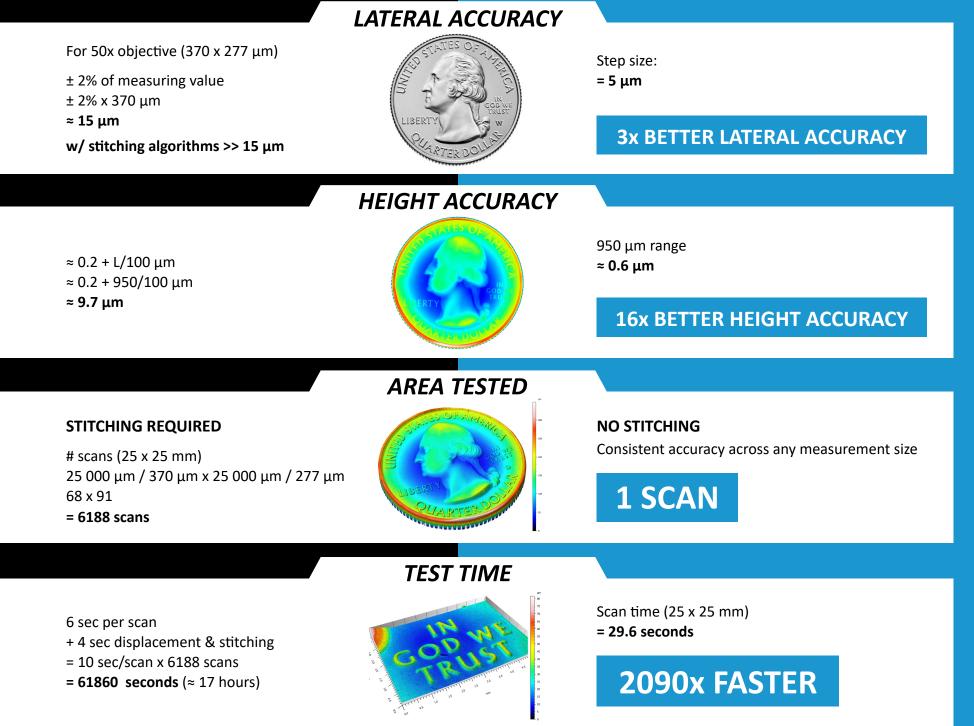
Changes in wavelength are the data being collected

INDEPENDENT LATERAL & HEIGHT ACCURACY

Lateral & height accuracy can be mixed and matched to meet a broad range of scanning requirements

NO ALGORITHMS

Physical wavelength reflected from the surface is measured directly for an accurate representative height map


NO STITCHING

Data points are collected continuously providing the same level of accuracy for both small and large areas

50x FASTER Data acquisition speed up to 384 KHz

LASER MICROSCOPE

OPTICAL SENSOR

MICROSCOPE VIDEO IMAGING

0

up to 50x objective magnification

> **1200 x 1600** color video camera

FLAWLESS LARGE AREA stitching & focus stacking

NANOVEA ST500 Optical profiler

For pricing information, please contact sales@nanovea.com

Also available in other configurations

PORTABLE

COMPACT

PORTABLE PORTABLE STANDARD HIGH-SPEED



COMPACT STANDARD

