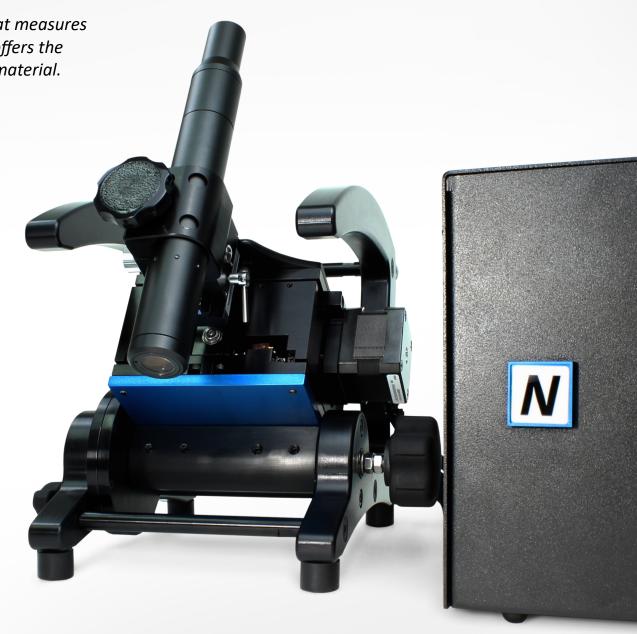


PORTABLE NON-CONTACT
3D OPTICAL PROFILER

ULTIMATE VERSATILITY

Designed with Chromatic Light technology that measures physical wavelengths, the JR25 Profilometer offers the highest accuracy on any roughness, form, or material. Transparent or opaque.


FIRST TRULY PORTABLE

3D NON-CONTACT PROFILOMETER

LAB-QUALITY RESULTS
IN THE FIELD

CHALLENGING ANGLES
NOW HASSLE-FREE

5.3 kg WEIGHT

X - Y STAGE TRAVEL

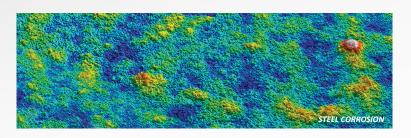
25 x 25 mm

Z AXIS

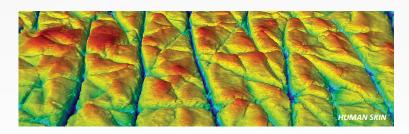
30 mm Manual

X - Y MAX SPEED

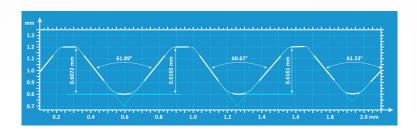
20 mm/s

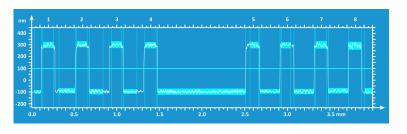

THE POWER OF CHROMATIC LIGHT

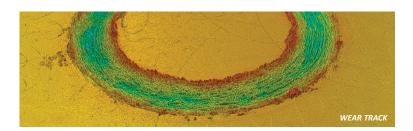
NANOVEA Non-Contact Optical Profilers are the ideal upgrade from traditional contact stylus and laser profilometers.

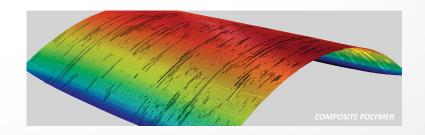


2D & 3D NON-CONTACT


SURFACE MEASUREMENTS


ROUGHNESS & FINISH


TEXTURE & GRAIN


GEOMETRY & SHAPE

STEP HEIGHT & THICKNESS

VOLUME & AREA

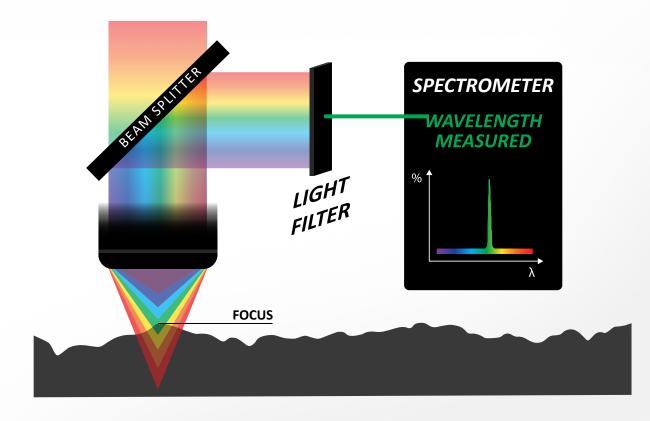
FLATNESS & WARPAGE

ANY MATERIAL. TRANSPARENT, REFLECTIVE OR DARK

STANDARD SENSOR SINGLE POINT

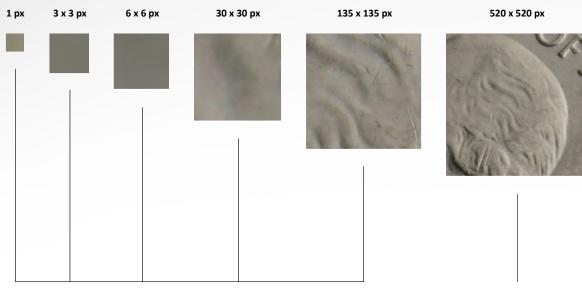
•	PS1	PS2	PS3	PS4	PS5	PS6
MAX HEIGHT RANGE	110 μm ——	300 μm ——	1.1 mm —	3.5 mm ——	10 mm ——	24 mm
WORKING DISTANCE	3.3 mm ——	10.8 mm —	12.2 mm —	16.5 mm —	26.6 mm —	20 mm
LATERAL X - Y ACCURACY	0.8 μm ——	1.7 μm ——	2.6 μm ——	4.6 μm ——	11.0 μm —	11.0 μm
HEIGHT REPEATABILITY*	1.9 nm ——	5.4 nm ——	15.8 nm ——	31.6 nm —	117.0 nm —	237.2 nm

up to 87° max surface angle


^{*} Fixed point measurement on glass. Ra average height variation for 1,200 points (100 samplings).

HOW IT WORKS

Chromatic Light Technology works by using white light and a set of sphero-chromatic lenses to split the light into individual wavelengths, each with its unique vertical focal point or height. All wavelengths, with their corresponding heights, make up the height range measurement scale of a sensor.


The spectrometer detects the wavelength with the highest intensity and processes its associated height measurement. During a full raster scan, this process takes only a fraction of a second and produces an accurate height map of the surface of interest.

NO COMPLEX ALGORITHMS • NO LEVELING REQUIRED • NO X-Y DATA STITCHING

THE PROBLEM WITH OTHER TECHNIQUES

LATERAL RESOLUTION VS LATERAL ACCURACY

STATES OF THE ST

NOT ENOUGH DATA TO CALCULATE FOCUS
NO PRACTICAL USE

PIXEL SIZE RESOLUTION: 2nm

THE SMALLEST INCREMENT FOR ANY PRACTICAL USE

EFFECTIVE ACCURACY: 1040 nm

THEM

To impress clients, companies often choose to define *Display Resolution* or *Camera Pixel Size* as lateral resolution. However, instruments that rely on camera pixel-based technology require complex algorithms to determine the focal point, which is problematic for analyzing complex surfaces.

Chromatic Light provides lateral **accuracy** which is determined by the physics and is directly related to the spot size of the chromatic light source of the optical sensor.

LASER SCANNING CONFOCAL MICROSCOPE

CHROMATIC LIGHT OPTICAL SENSOR

HEALTH HAZARD

Exposure to laser light reflectivity

SAFE WHITE LIGHT

No need for protective wear

INCONSISTENT LASER LIGHT WAVELENGTH

Inconsistencies in wavelength during scanning affect accuracy of results

UNIFORM & BROAD WHITE LIGHT SPECTRUM

Changes in wavelength are the data being collected

DECEPTIVE 'DISPLAY RESOLUTION'

Lateral & height accuracy are fixed by the objective lens making 'Display Resolution' insignificant

INDEPENDENT LATERAL & HEIGHT ACCURACY

Lateral & height accuracy can be mixed and matched to meet a broad range of scanning requirements

COMPLEX ALGORITHMS

Alpha blending algorithms stitch collected data layer by layer, grounding accuracy on complex calculations

NO ALGORITHMS

Physical wavelength reflected from the surface is measured directly for an accurate representative height map

STITCHING REQUIRED

Objective lenses have limited fixed fields of view Stitching of larger areas compromises accuracy of the scan

NO STITCHING

Data points are collected continuously providing the same level of accuracy for both small and large areas

50x SLOWER

Data acquisition speed up to 7.9 KHz

50x FASTER

Data acquisition speed up to 384 KHz

LASER MICROSCOPE

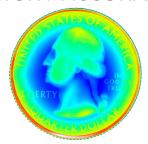
OPTICAL SENSOR

LATERAL ACCURACY

For 50x objective (370 x 277 μ m)

- ± 2% of measuring value
- ± 2% x 370 μm
- ≈ 15 µm

w/ stitching algorithms >> 15 μm


LIBERTY W

Step size:

= 5 µm

3x BETTER LATERAL ACCURACY

HEIGHT ACCURACY

950 μm range

≈ 0.6 µm

16x BETTER HEIGHT ACCURACY

$\approx 0.2 + L/100 \,\mu\text{m}$ $\approx 0.2 + 950/100 \,\mu\text{m}$

≈ 9.7 µm

STITCHING REQUIRED

scans (25 x 25 mm) 25 000 μ m / 370 μ m x 25 000 μ m / 277 μ m 68 x 91

= 6188 scans

AREA TESTED

NO STITCHING

Consistent accuracy across any measurement size

1 SCAN

TEST TIME

6 sec per scan

- + 4 sec displacement & stitching
- = 10 sec/scan x 6188 scans
- = **61860 seconds** (≈ 17 hours)

Scan time (25 x 25 mm) = 29.6 seconds

2090x FASTER

NANOVEA

JR25 OPTICAL PROFILER

For pricing information, please contact sales@nanovea.com

Also available in other configurations

PORTABLE STANDARD

PORTABLE HIGH-SPEED

COMPACT STANDARD

MODULAR STANDARD

MODULAR LARGE AREA

